Book name: Data Structures and Algorithms in Java, Second Edition
JAVA: 13.1 Modify the bfs.java program (Listing 13.2) to find the minimum spanning tree using a breadth-first search, rather than the depth-first search shown in mst.java (Listing 13.3). In main(), create a graph with 9 vertices and 12 edges, and find its minimum spanning tree.
Extra info:
Use the code listed in 13.2 below, thanks!
Listing 13.2:
// bfs.java
// demonstrates breadth-first search
// to run this program: C>java BFSApp
////////////////////////////////////////////////////////////////
class Queue
{
private final int SIZE = 20;
private int[] queArray;
private int front;
private int rear;
// ————————————————————-
public Queue() // constructor
{
queArray = new int[SIZE];
front = 0;
rear = -1;
}
// ————————————————————-
public void insert(int j) // put item at rear of queue
{
if(rear == SIZE-1)
rear = -1;
queArray[++rear] = j;
}
// ————————————————————-
public int remove() // take item from front of queue
{
int temp = queArray[front++];
if(front == SIZE)
front = 0;
return temp;
Searches 639
}
// ————————————————————-
public boolean isEmpty() // true if queue is empty
{
return ( rear+1==front || (front+SIZE-1==rear) );
}
// ————————————————————-
} // end class Queue
////////////////////////////////////////////////////////////////
class Vertex
{
public char label; // label (e.g. �A�)
public boolean wasVisited;
// ————————————————————-
public Vertex(char lab) // constructor
{
label = lab;
wasVisited = false;
}
// ————————————————————-
} // end class Vertex
////////////////////////////////////////////////////////////////
class Graph
{
private final int MAX_VERTS = 20;
private Vertex vertexList[]; // list of vertices
private int adjMat[][]; // adjacency matrix
private int nVerts; // current number of vertices
private Queue theQueue;
// ——————
public Graph() // constructor
{
vertexList = new Vertex[MAX_VERTS];
// adjacency matrix
adjMat = new int[MAX_VERTS][MAX_VERTS];
nVerts = 0;
for(int j=0; j for(int k=0; k adjMat[j][k] = 0;
theQueue = new Queue();
} // end constructor
// ————————————————————-
public void addVertex(char lab)
{
vertexList[nVerts++] = new Vertex(lab);
}
// ————————————————————-
public void addEdge(int start, int end)
{
adjMat[start][end] = 1;
adjMat[end][start] = 1;
}
// ————————————————————-
public void displayVertex(int v)
{
System.out.print(vertexList[v].label);
}
// ————————————————————-
public void bfs() // breadth-first search
{ // begin at vertex 0
vertexList[0].wasVisited = true; // mark it
displayVertex(0); // display it
theQueue.insert(0); // insert at tail
int v2;
while( !theQueue.isEmpty() ) // until queue empty,
{
int v1 = theQueue.remove(); // remove vertex at head
// until it has no unvisited neighbors
while( (v2=getAdjUnvisitedVertex(v1)) != -1 )
{ // get one,
vertexList[v2].wasVisited = true; // mark it
displayVertex(v2); // display it
theQueue.insert(v2); // insert it
} // end while
} // end while(queue not empty)
// queue is empty, so we�re done
for(int j=0; j vertexList[j].wasVisited = false;
} // end bfs()
// ————————————————————-
// returns an unvisited vertex adj to v
public int getAdjUnvisitedVertex(int v)
{
for(int j=0; j if(adjMat[v][j]==1 && vertexList[j].wasVisited==false)
return j;
return -1;
} // end getAdjUnvisitedVertex()
// ————————————————————-
} // end class Graph
////////////////////////////////////////////////////////////////
class BFSApp
{
public static void main(String[] args)
{
Graph theGraph = new Graph();
theGraph.addVertex(�A�); // 0 (start for dfs)
theGraph.addVertex(�B�); // 1
theGraph.addVertex(�C�); // 2
theGraph.addVertex(�D�); // 3
theGraph.addVertex(�E�); // 4
theGraph.addEdge(0, 1); // AB
theGraph.addEdge(1, 2); // BC
theGraph.addEdge(0, 3); // AD
theGraph.addEdge(3, 4); // DE
System.out.print(�Visits: �);
theGraph.bfs(); // breadth-first search
System.out.println();
} // end main()
} // end class BFSApp
////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////
***************************************************************************************************************************
///////////////////////////////////////////////////END OF LISTING 13.2/////////////////////////////////////////////////////////////
***************************************************************************************************************************
Listing 13.3:
// mst.java
// demonstrates minimum spanning tree
// to run this program: C>java MSTApp
////////////////////////////////////////////////////////////////
Minimum Spanning Trees 645
class StackX
{
private final int SIZE = 20;
private int[] st;
private int top;
// ————————————————————-
public StackX() // constructor
{
st = new int[SIZE]; // make array
top = -1;
}
// ————————————————————-
public void push(int j) // put item on stack
{ st[++top] = j; }
// ————————————————————-
public int pop() // take item off stack
{ return st[top–]; }
// ————————————————————-
public int peek() // peek at top of stack
{ return st[top]; }
// ————————————————————-
public boolean isEmpty() // true if nothing on stack
{ return (top == -1); }
// ————————————————————-
} // end class StackX
////////////////////////////////////////////////////////////////
class Vertex
{
public char label; // label (e.g. �A�)
public boolean wasVisited;
// ————————————————————-
public Vertex(char lab) // constructor
{
label = lab;
wasVisited = false;
}
// ————————————————————-
} // end class Vertex
////////////////////////////////////////////////////////////////
class Graph
{
private final int MAX_VERTS = 20;
private Vertex vertexList[]; // list of vertices
private int adjMat[][]; // adjacency matrix
private int nVerts; // current number of vertices
private StackX theStack;
// ————————————————————-
public Graph() // constructor
{
vertexList = new Vertex[MAX_VERTS];
// adjacency matrix
adjMat = new int[MAX_VERTS][MAX_VERTS];
nVerts = 0;
for(int j=0; j for(int k=0; k adjMat[j][k] = 0;
theStack = new StackX();
} // end constructor
// ————————————————————-
public void addVertex(char lab)
{
vertexList[nVerts++] = new Vertex(lab);
}
// ————————————————————-
public void addEdge(int start, int end)
{
adjMat[start][end] = 1;
adjMat[end][start] = 1;
}
// ————————————————————-
public void displayVertex(int v)
{
System.out.print(vertexList[v].label);
}
// ————————————————————-
public void mst() // minimum spanning tree (depth first)
{ // start at 0
vertexList[0].wasVisited = true; // mark it
theStack.push(0); // push it
while( !theStack.isEmpty() ) // until stack empty
{ // get stack top
int currentVertex = theStack.peek();
// get next unvisited neighbor
int v = getAdjUnvisitedVertex(currentVertex);
if(v == -1) // if no more neighbors
theStack.pop(); // pop it away
else // got a neighbor
{
vertexList[v].wasVisited = true; // mark it
theStack.push(v); // push it
// display edge
displayVertex(currentVertex); // from currentV
displayVertex(v); // to v
System.out.print(� �);
}
} // end while(stack not empty)
// stack is empty, so we�re done
for(int j=0; j vertexList[j].wasVisited = false;
} // end tree
// ————————————————————-
// returns an unvisited vertex adj to v
public int getAdjUnvisitedVertex(int v)
{
for(int j=0; j if(adjMat[v][j]==1 && vertexList[j].wasVisited==false)
return j;
return -1;
} // end getAdjUnvisitedVertex()
// ————————————————————-
} // end class Graph
////////////////////////////////////////////////////////////////
class MSTApp
{
public static void main(String[] args)
{
Graph theGraph = new Graph();
theGraph.addVertex(�A�); // 0 (start for mst)
theGraph.addVertex(�B�); // 1
theGraph.addVertex(�C�); // 2
theGraph.addVertex(�D�); // 3
theGraph.addVertex(�E�); // 4
theGraph.addEdge(0, 1); // AB
theGraph.addEdge(0, 2); // AC
theGraph.addEdge(0, 3); // AD
theGraph.addEdge(0, 4); // AE
theGraph.addEdge(1, 2); // BC
theGraph.addEdge(1, 3); // BD
theGraph.addEdge(1, 4); // BE
theGraph.addEdge(2, 3); // CD
theGraph.addEdge(2, 4); // CE
theGraph.addEdge(3, 4); // DE
System.out.print(�Minimum spanning tree: �);
theGraph.mst(); // minimum spanning tree
System.out.println();
} // end main()
} // end class MSTApp
////////////////////////////////////////////////////////////////